Online Language Processing and Listening Effort in the Face of Unexpected Talker Information

Sarah Colby & Bob McMurray Department of Psychological & Brain Sciences, University of Iowa

> Auditory Perception, Cognition, & Action Meeting November 16, 2023

Why do we care about talker information during speech processing?

Two ways to take advantage of talker identity (Luthra, 2023):

- Streaming
- Normalization

Talker Streaming

Listeners need to be able to separate speech they're listening to from background speech or noise

- Can use spatial location, but also cues to talker identity (FO, vowel formants)
- Easier to separate streams when talkers are acoustically dissimilar

But what about when you're not in noise?

Talker Normalization

Listeners need to accommodate for variation in production across talkers

Vowel Normalization

Some of the variability across talkers is systematic

The shape and size of the vocal tract impact vowel formants

• Male and female vocal tracts vary systematically

absolute formant frequencies

Weatherholtz & Jaeger, 2016; adapted from Hillenbrand 1995

Effects of Talker Variability

Talker variability is sometimes beneficial, but there is likely a processing cost

• Listeners will respond slower when the talker changes unexpectedly (Magnuson & Nusbaum, 2007; Magnuson, Nusbaum, & Akahane-Yamada, 2021)

Language processing system is robust

• Listeners are primed by words produced by two talkers (e.g., 'my' 'great' primes 'goose') (Newman, 2016)

Experiments

 Sentence processing in noise (babble) How does unexpected talker information affect talker streaming?
 Introducing an unexpected talker will disrupt real-time processing

- 2. Sentence processing with acoustic ambiguity
 - How does unexpected talker information affect normalization?
- 3. Effort engaged for sentence processing with unexpected talker information
 - Does listening effort increase in the face of unexpected talker information?

Experiment 1: Talker Streaming

How does unexpected talker information affect talker streaming?

22 minimal pairs that differed in vowel height• chick-check, vet-vat, shook-shuck, etc.

Spliced into sentences

• "This time, choose _____ [from the display]"

Embedded in multi-talker babble at 0 SNR

Experiment 1: Talker Streaming

Sentence Target Voice Voice

Look at how cute my gata sign what we are Islands in the are small book

Bakasha, seeder provide is what watare I heard that hat book

Experiment 1: Visual World Paradigm

Visual displays contain 2 minimal pairs

• Target, Competitor, 2 unrelated

2/3 match trials, 1/3 mismatch trials

• Start with a block of match trials, then trials are mixed

Results – Sentences in Babble

Condition	Sentence Voice	Target Voice	Target	Cohort	N=40
Match	Female	Female	0.96	0.03	
	Male	Male	0.93	0.06	
Mismatch	Male	Female	0.95	0.03	
	Female	Male	0.94	0.04	

Experiments

 Sentence processing in noise (babble) How does unexpected talker information affect talker streaming?
 Maybe it doesn't! No evidence that switching disrupts processing

- 2. Sentence processing with acoustic ambiguity How does unexpected talker information affect normalization?
 Introducing an unexpected talker change will disrupt real-time processing
- 3. Effort engaged for sentence processing with unexpected talker information
 - Does listening effort increase in the face of unexpected talker information?

Experiment 2: Vowel Normalization

Same minimal pairs \rightarrow 11-step vowel continua

 Found ambiguous steps (~90/10 response rate)

Slightly ambiguous targets spliced into sentences

Experiment 2: Vowel Normalization

Sentence Target

This time, select sp?ll on the screen

Match

())

))

Experiment 2 – Visual World Paradigm

Same visual displays as Experiment 1

Same distribution of match/mismatch trials

- 2/3 match trials, 1/3 mismatch trials
- Start with a block of match trials, then trials are mixed

Results – Ambiguous Vowel

Condition	Sentence Voice	Target Voice	Target	Cohort	NI
Match	Female	Female	0.93	0.07	IN=
	Male	Male	0.88	0.12	
Mismatch	Male	Female	0.91	0.09	
	Female	Male	0.92	0.08	

43

Experiments

 Sentence processing in noise (babble) How does unexpected talker information affect talker streaming?
 Maybe it doesn't! No evidence that switching disrupts processing

- 2. Sentence processing with acoustic ambiguity How does unexpected talker information affect normalization?
 No evidence that switching disrupts processing
- 3. Effort engaged for sentence processing Does listening effort increase in the face of unexpected talker information?

Experiment 3: Vowel Normalization

Pupillometry task: 132 trials

• Ambiguous target words that mismatch voice on 1/3 trials

VWP task: 264 trials

Results – Ambiguous Vowel

Pupil Results – Ambiguous Vowel

Summary

- Robust word recognition in the face of talker mismatches
 - Supports previous evidence that switching talkers mid-word doesn't affect lexical access (Newman, 2016)
- Talker cues are not sufficient to impair word recognition
 - It doesn't even seem to require more effort (although data collection is ongoing)
- Remaining questions
 - Is increased variability necessary to impact performance?
 - Are listeners becoming familiar with two voices over the experiments?

Acknowledgements

Thanks to Marissa Huffman and the rest of MAClab team!

Funding Sources: NIH NIDCD P50 DC000242 and R01 DC0008089